
By Phillippe Hacker (Oxford Business Law Blog)
Advanced machine learning (ML) techniques, such as deep neural networks or random forests, are often said to be powerful, but opaque. However, a burgeoning field of computer science is committed to developing machine learning tools that are interpretable ex ante or at least explainable ex post. This has implications not only for technological progress, but also for the law, as we explain in a recent open-access article.
On the legal side, algorithmic explainability has so far been discussed mainly in data protection law, where a vivid debate has erupted over whether the European Union’s General Data Protection Regulation (GDPR) provides for a ‘right to an explanation’. While the obligations flowing from the GDPR in this respect are quite uncertain, we show that more concrete incentives to adopt explainable ML tools may arise from contract and tort law.
To this end, we conduct two legal case studies, in medical and corporate merger applications of ML. As a second contribution, we discuss the (legally required) trade-off between accuracy and explainability, and demonstrate the effect in a technical case study.
Featured News
Belgian Authorities Detain Multiple Individuals Over Alleged Huawei Bribery in EU Parliament
Mar 13, 2025 by
CPI
Grubhub’s Antitrust Case to Proceed in Federal Court, Second Circuit Rules
Mar 13, 2025 by
CPI
Pharma Giants Mallinckrodt and Endo to Merge in Multi-Billion-Dollar Deal
Mar 13, 2025 by
CPI
FTC Targets Meta’s Market Power, Calls Zuckerberg to Testify
Mar 13, 2025 by
CPI
French Watchdog Approves Carrefour’s Expansion, Orders Store Sell-Off
Mar 13, 2025 by
CPI
Antitrust Mix by CPI
Antitrust Chronicle® – Self-Preferencing
Feb 26, 2025 by
CPI
Platform Self-Preferencing: Focusing the Policy Debate
Feb 26, 2025 by
Michael Katz
Weaponized Opacity: Self-Preferencing in Digital Audience Measurement
Feb 26, 2025 by
Thomas Hoppner & Philipp Westerhoff
Self-Preferencing: An Economic Literature-Based Assessment Advocating a Case-By-Case Approach and Compliance Requirements
Feb 26, 2025 by
Patrice Bougette & Frederic Marty
Self-Preferencing in Adjacent Markets
Feb 26, 2025 by
Muxin Li